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ABSTRACT

A mathematical model is developed for the description of the thermohydraulics of the two-phase flow
phenomenon in a vertical pipe. Using an additional momentum equation for the slip velocity, it is shown
that the computation of slip and pressure drop from the model equations is possible without the use of
any external correlations. The finite element method is used to solve the governing equations. The predictions
for a steam-water two-phase flow in vertical upflow with constant wall heat flux agree well with experimental
results and with widely used correlations.
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NOMENCLATURE
B, boiling number, w  velocity, m/sec,
S friction factor, x mass fraction,
g gravity constant, m/sec? z fluid space coordinate, m,
G mass flow velocity, kg/m? sec, P density, kg/m?,
h specific enthalpy, J/kg, o inclination angle (fluid flow),
p system pressure, N/m? ®?}, two-phase friction multiplier,
q heat flux density, W/m?, & void fraction,
r radius of the tube, m,
S slip ratio, Indices
T  temperature, °C, 1—liquid phase; 2—gaseous phase;
v specific volume, m’/kg, 21—phase difference
INTRODUCTION

Two-phase flow takes place in a wide range of industrial plants, boilers, nuclear reactors,
refrigeration systems etc. In these flow systems, it is important to be able to predict the pressure
drops. Their evaluation is necessary in the design of the fluid systems, in functional verifications
and in safety analysis of a great variety of components and systems. There are quite a number
of rather extensive models for the description of the working fluid. Many different approximate
models for the momentum equation have been proposed. These models differ both in
simplifications adopted to simulate interphase interactions and especially in the choice of the
parameters considered for expressing the flow evolution. Separated flow models involve the
evaluation of the phase interaction which is complicated by mathematical difficulty. For example,
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566 K. V. PRASHANTH AND K. N. SEETHARAMU

refer to Bergles et al.!, Cumo and Naviglio? or Wallis3. These models use external correlations
for their predictions or in describing the interfacial interactions. The model proposed herein
gives results of an extended mathematical description of two-phase flow fiuid behaviour stating
the possibility of a consistent characterization of the most relevant two-phase flow parameters,
i.e. slip and pressure drop, without the use of any external correlations. The finite element
method is used to solve the one-dimensional steady state model for vertical upflow of water
during forced convection boiling with constant wall heat flux in round tubes, Comparisons are
made with the available experimental data of Miropolskii*, Christensen® and with the well
known correlations of Martinelli-Nelson®. The predicted results are in reasonably good
agreement with the experimental data and correlations.

MATHEMATICAL MODEL EQUATIONS OF TWO-PHASE FLOW SYSTEMS

The description of the state of a flowing medium is done by using the fundamental conservation
laws for mass, energy and momentum leading to a set of partial differential balance equations.
If the medium investigated is in the form of a multi-component mixture, the balance equations
have to be written for each component of the mixture. Moreover, the balance equations for each
component must account for the mass, momentum and energy exchanges between the different
components. In the present work it is assumed that the investigated system is in thermodynamic
equilibrium at each instant. A single component steady flow steam generator system is considered
here with vertical upflow of water. The one-dimensional analysis in this work closely follows
the theoretical work of Schittke’, Soo®? and Sha and Soo!°.

Figure 1 shows the configuration used for the simulation of the actual steam generator system.
The actual steam generator is approximated by a single tube with a circular cross-section. The
fluid (water) flows vertically upwards through the tube which is heated with constant wall heat
flux. Depending on the state of water phases, there are three different regions in the steam
generator; two of them (the single-phase sections, economizer and superheater) are treated
mathematically equivalent. In the evaporator section, influenced by heating, water undergoes a
phase change leading to a two-phase flow system as both phases are simultaneously present
throughout the evaporator section. Both phases are assumed to be separate. The results obtained
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Figure 1 Flow geometry (one-dimensional flow)
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TWO-PHASE FLOW IN A VERTICAL PIPE 567

are valid for any flow regime, because the model derivation is independent of this constraint.
Principal flow direction of the fluid is termed as z.

Mass conservation
The density of the mixture is given by®:
p=pP+p? )

p" and p® are the partial densities (not equivalent to the true densities p, for the liquid and
p, for the gaseous phase).
Mass fraction or quality is defined as:

x= )
Using specific volumes v, and v, of the liquid and gaseous phases rather than densities, the
mean specific volume of the mixture is defined as:
V=1v; 4+ XUy, 3
where
U3t = 02—y @)

The mean mixture velocity is derived by summing the mass flow densities of the two-phases,
with phase velocities w, and w, respectively®:

pw = pMy, + pPhy, (5
ie.
W=, + XW,, 6)
where
Wy =W, — Wy @

w,, is the phase difference velocity, which is labelled as ‘slip velocity’. The mass balance equation
of the mixture follows from continuity and is written as:

W—=v— (8)

Energy conservation
Accordingly the energy equation of the mixture is:
dh
W— = 1] 9
e ©)
with specific enthalpy &, defined by the respective phase enthalpies /1, and I, is given by:
h=hy + xth, — hy) (10)

¢ is the heat flux density induced on the fluid flow. No energy balance equation for any of the
two phases is used because in this context the actual amount of energy transferred from one
phase to the other is of no importance.
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568 K. V. PRASHANTH AND K. N. SEETHARAMU

Momentum conservation

For a Newtonian fluid the total momentum gradient is equivalent to the sum of the driving
forces. Momentum balance equation for mixture is written as:

d
w—w=—ud—p—gsingb—fw2 (11)
dz dz

p is the pressure of the mixture (which is assumed to be identical for both phases for any value
of z). The driving forces are pressure head, gravity head and friction influencing the flow system.
Usually, the friction term is evaluated using external empirical correlations by various
investigators, e.g., Collier'!. In the present analysis no external correlations are used and the
friction term is evaluated using the momentum balance equations of individual phases.
Momentum balance equations for each of the two phases®?® are found to be after some

transformations:
d d
wl_wl= _ul—p—(w1 —w)ﬂ—gSinfﬁ“lef (12)
dz dz dz
d d d
dz dz dz

for the liquid and gaseous phases respectively. The above equations are not used directly for
the present model. The balance equation for the slip velocity w,, is derived by subtracting (12)
from (13) and simplifying, the balance equation for slip velocity becomes:

d d d
w2t = U2 L W2y =_ Saw? (14)

dz dz dz

where the slip velocity friction factor f,, is given by:
faw? = fowi — fiw} (15)

It is seen that the gravity head source term is not present in the momentum balance equation
for the slip velocity. Instead, there is a new source term describing the influence of the mean
velocity gradient.

With the knowledge of the mean velocity w, the slip velocity w,, and the mass fraction x, the
true phase velocities w, and w, are computed. Thus, slip ratio is calculated using:

=22 (16)

Wy

directly from model equations. For the steady-state behaviour, with the use of an additional
momentum balance equation for the slip velocity, it is possible to evaluate slip ratio without
any external correlations.
The void fraction is calculated by using!!:
1
= v 17
14s=®0

x v,

Similarly, the two-phase friction factor is calculated using an equivalent expression. Assuming
that f, and f, are well known (being the equivalent single phase friction factors depending on
the Reynolds number), the summing up of the momentum balance equation for the separate
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TWO-PHASE FLOW IN A VERTICAL PIPE 569

phases according to the definition (6) of the mean velocity, will yield:

fw? = (1 = x)f,w? + xfow3 (18)

The evaluation of f; and f, depends on the nature of the flow (laminar or turbulent) from the
Reynolds number at for the situation at each location of the flow. In majority of the cases
turbulent flow will be taking place.

In this way the model is able to perform without any additional use of external correlations
for determining slip and friction coefficients. The state variables (such as specific volume, enthalpy
and temperature) are dependent upon the system pressure p as shown below:

v, =0,(p) vy = 0,(p)
hy = hy(p) hy = hy(p) (19)
T = T(p)

The two-phase friction multiplier ¢, commonly in use'! can be calculated by describing ¢7,
as the ratio of actual two-phase friction pressure drop and a fictitious single-phase frictional
pressure drop when the total flow is liquid only with the same mass flow rate as that of two-phase
flow.

2
o3, =2 I (20)
v fiw

Mathematical model equations for single-phase flow systems

The two cases in the system where single phase flows have to be considered are: (i) sub cooled
water in the economizer; (ii) superheated vapour in the superheater. These cases are not
considered separately as there is mathematically no significant difference between them.

The balance equations needed here are equivalent to the two-phase balance equations for the
mixture mass, energy and momentum conservations. There is no slip velocity equation in single
phase flow. The thermodynamic state variables are dependent on the system pressure and
temperature:

v=uv(p, T); h=h(p,T) (21)

Table 1 gives the governing balance equations listing for the single phase and two-phase flow
situation.

Table I Governing equations for single and two-phase flows

Single phase Two-phase
d dw d d
Mass balance w b v & w Lo v v
dz dz dz dz
dh ) dh R
Energy balance wW— =13 w—=1r4
dz dz
d d . d d .
Momentum balance w o P gsin ¢ — fiw? w o —p L gsin ¢ — fiv?
dz dz dz dz
. dw,y, dw,, dp dw
Slip vel balance w——=0 w = —Uyy — — Wy, — — [ w?
p dz 4z 2y uy FENG
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570 K. V. PRASHANTH AND K. N. SEETHARAMU

FINITE ELEMENT FORMULATION

The finite element analysis is used to model this problem to take care of various types of possible
boundary conditions along the length of the pipe. Finite element method also facilitates a simpler
way for extending the model to 2-dimension/3-dimension.

A one-dimensional linear element with two nodes is used in the following, as shown in Figure
2. Galerkin‘s method is used for the analysis!?

The unknowns are taken with finite element discretization as:

{w} = [NI*{w} {h} = [N1*{h}
{p} = [NI*{p} {wa1} = [NI**'{w2,} (22)
{2} =[N fw?}  {f2w?} = [N){f21%"}
where
[N1=[U —qn] and dz = Avdy (23)
Then using Galerkin’s method:

f{{ P d{“’}}mr Ardy— 0
,[ {{W} {—v} - {U}Q}[N]Az dn=0

(24)
f{{ vy SV d{h} + {v} =2 d{p} +gsin¢ + {f‘VZ}}[N]TAZ dp'=0
[{o }d{“’“} + fonr} { ) # o) 04 oz = o
Evaluating (24) the stiffness matrix is written as:
[K] x {®} = {f} (25)

8x8 (Bx1) (@x1

where [ K] is the elemental stiffness matrix and { f} is the elemental force vector as shown below:

[K,, 0 0 0 K, s 0 0 0 7/ w) !0}
0 Ky, 0 0 0 K, 0 0 hy Iz
K3, 0 Ky 0 K35 0 Ky O Dy f3
Ksyi 0 Ky Kis Kis 0 Kiq Kus Man > = J Js $
K 0 0 0 Kes 0 0 0 || w 0
0 K¢a O 0 0 Kg O 0 h, fe
K4y 0 Ko 0 Ky;5 0 Ky O D2 fa
| Ky 0 Kgo Kgs Kgs 0 Kg; Kgg | \Way,) \ S5
)7 = 0 n-= 1

Tl l where = 2
. i Tl 1 Az
z, z,

Figure 2 One-dimensional linear element
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TWO-PHASE FLOW IN A VERTICAL PIPE 571

where:

Ky =Ks =v, Kis=Ksy= —v;

Ky = K31 = K35 =Ky = — 2wy + w,) Kj6 = Kag = (2w, + w,)
K3z = =0y +v;) K37 =20, +v,)
Ka = — 2wy, +way,) K43 = — (2039, + v3y,)
Kys = (2wyy, + way,) K47 = Quyq, + 024,)
Kez = K1 = Kgg = —(wy + 2w,) Kes = K75 = Kgg = (W; + 2w,)
K3 =Ky = —(vy + 2v,)
Kgy = —(wa1, + wyy,) Kgs = —(v31, + 23,)
Kgs = (W1, + Way,) Kg7 = (v21, + v21,)

f2=qAz(2v; + v,)

f3={Bgsin ¢) + 2(fw?), + (fi?),}Az
Ja={2(f21w?), + (f2,w?)}Az

Jo = qAz(v, + 2v,)

f7={(3gsin ¢) + (fiv?) + 2(fiw?),}Az
Jo = —{(f2%*)1 + 2(/2,W*)}Az

The inlet conditions of the liquid such as pressure, mass flow rate, temperature are known.
By solving the elemental matrix, the pressure, mixture velocity, slip velocity and enthalpy are
evaluated at the second node. Knowing the conditions at the 2nd node (which is the first node
of second element), the pressure, velocity, enthalpy and slip velocity at node 3 is evaluated in
a similar manner. In this way we march until the end of the pipe is reached.

The elemental stiffness and force matrices involve the flow and physical parameters (which
are dependent on pressure at each location) at node 2 of the same element, which is not known
a priori. Hence, we assume the values of physical parameters and velocities to be the same in
both the nodes and start iteration. Using the calculated values at node 2 during first iteration,
next iteration is carried out. The iterations are stopped when the values converge within an
accuracy of 0.0001.

NUMERICAL EVALUATION

A computer program is developed in Fortran according to the methodology described. The
program takes care of both single and two-phase flow situations. The method is applied to the
vertical upflow of steam-water in round tubes. Results are obtained for different combinations
of pressures, mass flow rates, wall heat flux and diameters as shown in Table 2. The size of each
element is taken as 0.001 m. Number of elements depends upon the length of the pipe.

Table 2 Various combinations of flow situations

Pressure (MPa) 4.14 6.89 8.27 10.0 200
Mass flux (kg/m? sec) 929.0 12230 1332.0 1460.0 2664.0
Heat flux (kw/m?) 100 150 200 355 2689.0
Diameter (mm) 50 9.0 10.16 125 -
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572 K. V. PRASHANTH AND K. N. SEETHARAMU

RESULTS AND DISCUSSION

The results obtained from the above analysis using the finite element method for the solution
are presented and compared with some of the available data from experiments and also with
the well known correlations.

Figure 3 shows the plot of two-phase flow friction multiplier as a function of quality for two
pressures 20 and 10 MPa, with mass flow velocities 1332 and 1500 kg/m? sec and wall heat flux
of 355 and 150 kw/m? (Koehler and Kastner!?). For the sake of comparison, the values were
calculated based on homogeneous model®, Martinelli-Nelson (M-N)®, Levy!* and Thom!?
correlations along with experimental data'3 are also plotted. It is observed that the present
model predicts the two-phase friction multiplier which lies close to the M-N correlation and
lies within the range of other correlations and experimental points. The trends of the predicted
®Z%, follows that of M—N correlation.

The effect of pressure on the two-phase friction factor is shown in Figure 4. The results are
in good agreement with M—N correlation® and also with the experimental data (for 20 MPa)!3.

The effect of mass velocity upon the two-phase flow friction multiplier, (I)}o at a pressure
6.89 MPa is shown in Figure 5. Diameter of the pipe is 5 mm. At a fixed value of x, a decrease
in ®%, with increased mass velocity is observed. The predictions are compared with experimental
results of Muscettola!®. The M—N® and homogeneous models effectively bracket the experimental
and present model results. Values of Thom!? are also shown.

The slip ratio depends on the parameter, v, defined as:

I__ 4 _B (26)
v Ghyf, f2

p = 20.0 MPa p = 10.0 MPa
5
2 s
s =t
> >
€ £
c c
2 9
kT kS
v Y
g &
a g
o o
2 2
— —
1 | | I ! 1 1 1 ] 1
0 02 0.4 0.6 08 1.0 0 0.2 0.4 0.6 0.8 1.0
Quality X Quality X
Figure 3 Two-phase friction multiplier variation with quality at 20.0 and 10.0 MPa pressures. , present model;
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Figure 6 Influence of v on slip ratio

B, is the boiling number. The effect of v on the slip ratio is shown in Figure 6. The slip ratio
remains constant for quality greater than 0.25 at a particular v.

Figure 7 shows the slip factor at mass quality x = 1.0 as a function of the pressure. The values
calculated by various investigators are also shown for comparison. The slip ratio is greater at
lower pressures and less at higher pressures which aspect is observed by other investigators?2.
The agreement with M—N correlation is very good.
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Figure 8 shows the variation of void fraction against quality for a pressure of 8.27 MPa.
Various other correlations compiled by Isbin and Biddle!” are also shown in the Figure along
with experimental data of Kelly and Kazimi'®. It is seen that the model predictions of
the present model are reasonably close to the experimental points when compared to the other
correlations'” viz., M—N, Thom, Baroczy and homogeneous model.

Figure 9 shows the plot of void fraction against the mass quality for various pressures. The
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TWO-PHASE FLOW IN A VERTICAL PIPE 575

predicted values compare well with the experimental data!®. Also, the influence of pressure on
the void fraction v/s quality is in good agreement with the accepted trends!’.
Figure 10 shows a plot of flow pattern map for vertical upflow!®. The different cases discussed
above are plotted on the map using the parameters'®:
G 2
+2 = [ x] (27)

o _ [G(1 —x)P?
piji = LU = o1 and P22
P p2

As can be seen from the Figure 10, the test runs cover most of the regimes such as bubbly, slug,
churn, wispy annular and annular flow in the map. The regimes covered by a flow situation is
dependent upon the pressure and mass flow rate of the flow. The good agreement of the two-phase
friction multiplier, slip ratio and void fraction predicted by the present model with experimental
data/accepted correlations clearly demonstrates that the present model is capable of predicting
the characteristics of flow in most of the flow regimes.

CONCLUSIONS

Based on the physical relationships a model was proposed for computer simulation of steam
generator with special emphasis on description of the relevant two-phase flow process. It was
shown that it is possible to compute using finite element method the two-phase phenomena,
slip ratio and two-phase friction factor directly from the model equations without the help of
external correlations, provided one additional momentum balance equation for slip velocity is
taken into consideration. The results show a good agreement with the most common correlations
and experimental data.
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